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Abstract. In a weakly-collisional bounded plasma, secondary electrons emitted from

the walls can transit the plasma gap and reach the opposite wall. To accurately predict

wall potentials and energy fluxes, one must account for this effect in the flux balance.

We present 1D3V particle-in-cell simulations of a plasma slab in an E×B field where the

emission yield is different at each wall and varied in a wide parameter range.Analytical

formulas are derived to explain the dependence of wall potentials on the emission from

both walls. When emission yields are asymmetric, wall with weaker emission charges

more negatively to compensate the emission imbalance. We show that small imbalance

of emission can lead to relatively large wall potential changes. Moreover, details of

secondary electron emission energy distribution are important to take into account for

correct calculation of this effect; for example, a small fraction of energetic elastically

backscattered secondary electrons can further enhance the wall potential difference.

Both walls are usually negative charged by plasma. But for certain magnitudes of the

E×B field, a distinct state appears with a positive surface charge at one wall and a

negative surface charge at the other, causing a drastic change in the plasma properties.
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1. Introduction

It is well known that the electron emission plays an important role in the formation

of plasma sheath. The sheath structure in front of one isolated surface were studied

making use of fluid [1, 2] and kinetic approaches [3–6]. These studies revealed that

the electron emission considerably affects the ion and electron flux balance at the wall

and leads to reduction of the sheath potential drop. However, in many low-collisional

plasma devices where the electron mean free path exceeds the plasma gap, the electron

emitted from one wall can penetrate through the plasma and exit to the opposite wall

without undergoing collisions. Thus electron emission can directly affect the net charge

flux on walls that are far from their origin, and therefore the formation of sheaths

at surfaces bounding the plasma become coupled. This phenomenon exists commonly

in the weakly-collisional plasmas. For example, in dc-augmented capacitively coupled

plasmas, the ion-induced secondary electrons from the electrode can strike the substrate

or the opposite electrode and have a profound effect on the discharge efficiency [7].

The photoelectrons or secondary electrons from the lunar surfaces can reach the lunar

orbiter [8], or dominate the charging of the lunar dust grains [9]. In this paper we focus

on another typical example: the secondary electrons emission (SEE) in an E×B device.

The devices based on E×B drift [10] have been commonly used in plasma immersion ion

implantation [11], magnetron discharge [12–15], Penning discharge [16–20], and the Hall

thruster [21]. The electron temperature in these devices can reach 20∼50 eV, which is

high enough to cause strong electron-induced SEE [22]. The typical electron mean free

path can be as long as several meters, while the width of the discharge gap, L is usually

several centimeters. Thus the collisionality is low, and a change in SEE flux from one

wall can therefore affect charging of the opposite wall.

Another consequence of low-collisionality is the formation of complex electron

velocity distribution function (EVDF). In these discharges the EVDF is anisotropic

and has a depleted tail as compared to a Maxwellian EVDF; this enhances the effect

of SEE recollection by opposite walls on wall charging. Meezan and Cappelli showed in

reference [23] that the walls preferentially absorbs fast electrons, therefore high energy

tail of EVDF is depleted. Authors of reference [24] showed that the EVDF consists of

two components: the secondary electrons emitted from the walls and plasma ”bulk”

electrons trapped by the potential well formed between two walls, as shown in figure 1.

Even though bulk electrons are in the majority, their contribution to the electron flux

hitting the wall can be much smaller than secondary electrons from the opposite wall due

to the depletion of their EVDF in the high-energy region [24]. Any electron with kinetic

energy towards the wall higher than wall potential quickly escapes from the plasma,

which leads to depletion of high-energy region of EVDF. In weakly-collisional plasma,

the depletion of EVDF cannot be restored by electron elastic collisions, because the

scattering is infrequent. Thus the flux of bulk electrons hitting the wall at a given value

of wall potential and plasma parameters greatly decreases as compared to the case when

the electron mean free path is small compared to the discharge gap. In self-consistent
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Figure 1. Schematic of the 1D model of E×B discharge.

calculation the electron flux must balance the ion flux, therefore the wall potential

in weakly-collisional plasma is typically small compared to the higher pressure plasma

when the electron mean free path is small compared to the discharge gap [24]. Moreover,

the EVDF of bulk electrons is highly anisotropic. In the y-z plane bulk electrons are

accelerated by E×B field; anomalous and collisional scattering processes lead to heating.

The EVDF in the y-z plane is approximately a Maxwellian with a temperature Tez.

The EVDF in x-direction is no longer Maxwellian due to the depletion at energies that

correspond to fast wall losses, so-called loss cone [24]. For electrons with low energies

that cannot escape to the wall, the EVDF in direction normal to the wall (x-direction)

is approximately also a Maxwellian, but with a temperature Tex, few times less than

Tez. A series of particle-in-cell (PIC) simulation has been performed by D. Sydorenko to

study details of depletion and anisotropy of EVDF in Hall thruster [25–27]. In electron-

neutral collisions, the velocity direction changes and kinetic energy of bulk electrons can

be transferred from the y-z plane to the x-direction. Because this scattering process is

infrequent in weakly-collisional plasma, only a small portion of bulk electrons can reach

the wall due to the scattering by collisions. Unlike bulk electrons, a substantial portion

of secondary electrons can penetrate the potential well, because they are emitted from

the negatively charged surfaces and accelerated by the sheath and plasma potential to

the energy above the potential energy confining electrons (above wall potential times

electron charge).

Several investigations have been performed to analyze the effects of secondaries

on plasma. Ahedo and Parra developed a fluid model in order to analyze the effect of

partial trapping of secondary electrons on the sheath [28]. Assuming part of SEE beams

are thermalized by collisions within the bulk plasma, he determined that the sheath

potential drop depends mainly on the net SEE current crossing the sheath. Morozov [29]

proposed that the secondary electrons can contribute to additional axial electron current

and cross magnetic field conductivity, so called near-wall conductivity. This phenomenon

was later analyzed in a series of papers based on the fluid model [30], the kinetic

theory [31,32] or the PIC numerical simulation [32–34]. Keidar and Beilis [35] described

a possible reason for the reduction of near wall conductivity: if the angle between the

magnetic field line and the normal of the wall is large, some secondary electrons will

return back to the surface within their first gyroration. There is, however, another

mechanism for the recollection of secondary electrons back the wall that was seldom

analyzed until recently: the asymmetry of the SEE yield of the walls. In Hall thruster,

this SEE yield asymmetry can be caused by specially designed wall materials [36–38] or



4

the wall erosion, which leads to modification of surface roughness [39] that may greatly

affects the SEE yield [40]. SEE yield asymmetry leads to asymmetric surface charging

and correspondingly potential difference of the two walls forms. Therefore, a large

proportion of secondary (and bulk) electrons can be reflected back to the wall before

they can reach the opposite wall with higher negative surface charge. Change of SEE

yield can lead to drastic changes in sheath structure. For example, if the SEE yield of

one wall exceeds unity whereas at another wall is less than one, a regular sheath forms

at the wall with small SEE yield and inverse sheath may form at the wall with large

SEE yield. Inverse sheath differs from regular sheath in the way electric field accelerates

the ions: ions are accelerated towards the wall in regular sheath and decelerated in the

inverse sheath [41]. Taccogna observed some of these effects making use of particle-in-

cell simulations [34, 42, 43]. Lafleur [44] developed a 1D analytic model to show that

a dc bias voltage may form in CCP plasmas due to different ion-induced secondary

emission coefficients at each of the rf electrodes; however, the model was based on the

assumption of collisional plasma and thus not directly suitable for the weakly-collisional

case considered here. Our former work showed that transiting secondaries have a major

influence on the wall potential and plasma-surface interaction processes by comparing

how flux balance differs in discharges where the secondaries thermalize in the plasma

volume from the plasmas where secondaries can propagate through the gap and reach

the opposite wall [45]. Because of the importance of this transit effect, one must give a

quantitative analysis of the all flux components taking into account secondary electrons

from the two walls in order to develop model for the wall potentials, particle and heat

fluxes to the walls. That is the aim of this paper.

In this paper, we performed particle-in-cell simulations of plasmas in E×B

discharges using a 1D3V-PIC code, EDIPIC [25]. In addition, analytic relations have

been derived for wall potentials as a function of the walls SEE yields. This paper is

organized as follows: section 2 describes the 1D3V model and the simulation setup.

Section 3 presents an overview of the simulation results and the discussions of basic

mechanisms of the current balance at the two walls. Section 4 discusses details of the

formation of bulk and SEE electrons populations, and gives derivation of the analytical

relation between wall potential and SEE yields. Section 5 discusses a limiting case of

SEE asymmetry with an inverse sheath at one wall. Finally, the conclusion is offered in

section 6.

2. Description of the model

Schematic of the 1D3V simulation model is shown in figure 1. An external constant E×B

field was applied to a plasma slab bounded by two infinite plane walls with separately

adjustable SEE yield functions. Electrons are magnetized and their motion in all three

directions is considered. In all simulation cases the ions are Xe+. For magnetic field

values studied here, ions are not magnetized and only ion motion in direction normal

to the wall (x-direction) is taken into account. In x-direction, the potential distribution
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Table 1. Initial plasma parameters in the PIC simulation.

Parameter Symbol Value

magnetic field (G) Bx 100

electric field (V/cm) Ez 100 or 50

width of the plasma slab (mm) L 25

plasma density (m−3) n 1017

ion temperature (eV) Ti 1

electron temperature (eV) Te 1

neutral density (m−3) na 1018

turbulent frequency (Hz) νt 2.8× 106 (case 1∼4,6) or 7.0× 106 (case 5)

temperature of the true secondary electron (eV) Tt 2

and particle dynamics is self-consistently solved. When solving the Poisson equation

the potential of the right wall was set to be zero; however, we replotted the potential

profiles with zero potential at the centre of the plasma in order to compare the sheath

potential values for different simulation cases.

Monte Carlo method was implemented for electron-neutral elastic collisions and

ionization collisions between electrons and xenon neutrals in the code. The collision

frequencies are calculated as a function of electron energy for given cross sections

of these processes [25]. The average collision frequencies of the whole computational

region obtained in each simulation case are given in table 3. Additionally, the turbulent

collisions are introduced, which randomly scatter particles in y-z plane without changing

their energy. It is used to describe the anomalous electron mobility caused by random

field fluctuations [25].

Initial parameters of the PIC simulation are listed in table 1. We chose the electric

field magnitude below 100V/cm to avoid regimes with relaxation sheath oscillations that

complicate analysis [46].

The SEE yield at the walls was based on a SEE yield model of the boron nitride

(BN) ceramics, except for the case 4, where the SEE yield was set to be constant as a

function of incident electron energy. Details of the SEE yields of boron nitride can be

found in reference [25]. Two additional factors, cL and cH , are introduced to adjust the

SEE yields and establish the asymmetry:

γLe,s = cL γBN(we, θ),

γHe,s = cH γBN(we, θ), (1)

where, γLe,s and γHe,s are respectively the SEE yield for the low-SEE and high-SEE sides.

γBN is analytical model of the SEE coefficient of BN ceramics. Its value depends

mainly on the incident electron kinetic energy we and weakly on the electron incident

angle θ. The secondary electrons emitted from the walls consist of the elastically

or inelastically backscattered electrons with energy comparable with incident electron

energy and the ”true” secondary electrons with energy of few electronvolts. Figure 2

shows the dependence of the total and partial SEE yields on the electron energy we
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Figure 2. Dependence of the total and partial secondary electron emission yields on

the electron energy for the normal incidence [25].

for normal incidence. The angular distribution of secondary electrons is assumed to be

axisymmetric with respect to azimuthal angle and proportional to the cosine of the polar

angle θ, and independent of the primary electron angle of incidence [25]. The energy

of elastically reflected electrons doesn’t change after the collisions with the wall. The

energy of inelastically backscattered electrons is uniformly distributed between 0 and

the energy before the collision. The typical energy distribution curve of true secondary

electrons has a peak at about 1∼2eV and decreases rapidly as the energy increases [47].

Here, for simplicity, the electron energy distribution function of secondary electrons is

described by a half-Maxwellian distribution:

f t
w(w) = 2

√
w

π

(
1

Tt

) 3
2

exp
(
−w
Tt

)
. (2)

In order to investigate effects of asymmetry of SEE yields on plasma parameters we

performed simulations for 6 cases with different values of applied electric field and SEE

parameters, as shown in table 2. In some cases SEE was turned off for one or two walls.

Cases 1 to 5 focus on the regular sheath. In case 1 to 4 the electric field value was fixed

to be 100V/cm, while the SEE yields were varied. In cases 1 and 2 the SEE yields were

set to be symmetric, but in case 2 the emission yields were reduced to zero for both

walls. In case 3, γBN was directly used as the SEE yield of the right wall, while for

the left side cL was proportionally reduced from 1 (at 20000 ns) to 0 (at 40000 ns), and

the system changed from a symmetric one to a highly-asymmetric one with no emission

from the left wall. In case 4 the electron backscattering was not taking into account and

all emitted electrons are true secondaries of low energy. The SEE yield of case 4 did

not follow the model of BN ceramics but was set to be constant for all incident electron

energies with the value corresponding to the net SEE yield of the right wall for the case

3. In case 5 the electric field E was reduced from 100V/cm to 50V/cm. In case 6, the

right SEE yield was increased above unity to cause formation of an inverse sheath.
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Table 2. The electric field and the SEE model used in the simulations.

case Ez (V/cm) left SEE coefficient right SEE coefficient

1 100 γBN γBN

2 100 0 0

3 100 cLγBN , cL decreases from 1 to 0 γBN

4 100 0 0.85 (”true” secondary emission only)

5 50 0 γBN

6 100 0 cHγBN , cH = 1.5

3. Overview of the simulation results and the discussions of basic

mechanisms of the current balance at the two walls.

Taking SEE into account, the current balance at a floating wall reads

Γi = Γe = Γe,in − Γe,out = (1− γ)Γe,in , (3)

where Γe and Γi are the net electron and ion fluxes absorbed by the wall, respectively.

Γe,in and Γe,out denote the primary and secondary electron flux. In equation (3) γ denotes

net or averaged secondary electron emission yield over all electrons incident upon the

wall.

In sections 3 and 4 it is assumed that a sheath with negative surface charge on

the wall forms, and the coefficients of emission from left or right walls are below unity.

And all emitted electrons can pass through the sheath. However, when emission is

intensive and secondary electron emission coefficient of plasma electrons incident upon

wall exceeds unity, the surface charge can become positive and then a small potential

barrier forms to reflect part of secondary electrons back to the wall. Then, the classical

Debye sheath becomes a space-charge-limiting sheath [46,48], or an inverse sheath [41,49]

forms. An example of the inverse sheath is discussed in section 5 for the limiting case

of high SEE asymmetry.

The ion flux Γi can be estimated making use of the Bohm criterion for the ion

velocity, and the fact that ion number density decreases about twice from the plasma

center to the sheath boundary in the collisionless plasma [50]. Note that reference [51]

shows Bohm criterion is weakly affected by the presence of electron emission. Therefore

one obtains for the ion flux

Γi =
1

2
ne

√
Tex
mi

. (4)

It is evident from equation (4) that the ion flux is independent of the sheath potential

and is the same for both walls. An apparent consequence from equations (3) and (4) is

that the net electrons fluxes Γe hitting both floating walls are approximately the same

for either symmetric or asymmetric configuration [45]:

ΓL
e,in

(
1− γL

)
= ΓH

e,in

(
1− γH

)
. (5)
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Table 3. The plasma parameters obtained in simulations and corresponding

theoretical predictions.

case number 1 2 3 4 5 6

input variables Ez(V/cm) 100 100 100 100 50 100

backscattering on on on off on on

Simulation results γL 0.82 0 0.82−0 0 0 0

γH 0.82 0 0.82−0.86 0.85 0.75 1.0

Tez(eV) 32.5 37.6 32.5−31.8 29.6 21.8 8

Tex(eV) 9.5 9.6 9.5−9.4 9.4 7.5 8

Tbs(eV) 10 10 10 NA 6.2 12

νen(105s−1) 5.3 5.3 5.3 5.3 5.3 5.9

νioniz(105s−1) 1.1 1.1 1.1 1.1 1.1 0.3

Φp − ΦH
w (V) 18.7 21.4 18.7−18.2 16.7 15.2 1.3

Φd = ΦL
w − ΦH

w (V) 0 0 0−17.3 6.0 9.9 44.9

χt 0.53 0.53 0.53 1.0 0.53 0.37

Theoretical prediction Φp − ΦH
w (V) 15.2 17.3 15.2−15.0 14.0 12.74 NA

Φd = ΦH
w − ΦL

w(V) 0 0 0−18.7 6.7 11.67 47.7

Here again the superscript ’L’ or ’H’ respectively denotes the wall with lower or higher

SEE. The sheath potential drop is controlled by Γe,in and γ; and if SEE is asymmetric so

are incident electron fluxes. Because SEE electrons are propagating through the plasma

and are incident on the opposite walls, the two sheaths are coupled to each other due

to the SEE electrons transit from one wall to another.

The simulation results for the plasma potential and potential difference between

the two walls are summarized in table 3 together with other plasma parameters. The

potential profiles for the cases 1-3 are compared in figure 3. For the symmetric cases

1 and 2 (the red and green curves, respectively), the sheath potential drop of both

sides increases slightly from 18V to 21V as both SEE yields drop to 0. The potential

profile of the highly-asymmetric case 3 without taking emission from the left wall into

account is shown by the blue curve. Under this condition, the value of the right sheath

potential drop is approximately equal to that for the two symmetric cases. However,

the left sheath potential drop greatly increases and the potential structure becomes

significantly asymmetric. Figure 4 shows the number density distribution of ions and

electrons in the highly-asymmetric case 3. The decrease of electron density in the left

sheath corresponds to higher potential drop in the sheath that blocks electrons from

reaching the left wall. The sheath width is detected to be about 0.65mm. The evolution

of wall potential for the asymmetric case (case 3) is shown in figure 5. As the left SEE

coefficient reduces from 0.82 to 0, the sheath potential drop at the right wall remains

almost the same, 18V, whereas the value for the left sheath potential drop greatly

increases from 18V to 35V.

By examining figure 3 and figure 5, it is evident that the change in wall potential

due to variation of SEE yield is obtained only in the asymmetric SEE case, while in the
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Figure 3. Potential profiles obtained in particle-in-cell simulations (case 1-3.)
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Figure 4. Ion and electron number density profiles obtained in particle-in-cell

simulations (case 3, γHe,s = γBN , γLe,s = 0). The data is normalized by the plasma

number density at the middle of the channel.

symmetric case the wall potential doesn’t change much even if both of the two walls

SEE yields are reduced to zero. In the symmetric case, the fluxes of two transiting

beams cancel each other on the two walls and, therefore, they don’t contribute to the

total electron-ion flux ballance; that is why the SEE yield doesn’t affect much the

wall potential. However, the asymmetry of SEE can break the equality of two counter

propagating beam fluxes, and the wall charging process becomes much more complex.

In case 3, when the left SEE yield starts to decrease, the net electron flux on the left wall

temporally exceeds the ion flux; consequently, the negative charge accumulates on the

left surface and the left wall potential drops. The decrease of the left wall potential is
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Figure 5. Time-dependant evolution of (a) sheath potential, (b) SEE yields and (c)

normalized incident electron flux hitting the two walls in case 3. The electron influx

is normalized by the average electron number density ne,avg across the channel.

stopped eventually due to reduction of the electron flux reaching the left wall, as shown

in figure 5(c). This rebalance of particle fluxes on the wall is accomplished by reflecting

part of incident electrons whose kinetic energy in x-direction is not sufficient to overcome

the left sheath and reach the wall. Figure 6 illustrates different components of electron

fluxes in an asymmetric SEE system. The electron flux hitting the right wall includes 4

components. Two of them, the collision-ejected (CE) electrons which are bulk electrons

scattered by collisions with neutrals (denoted by the subscript ’ce’ in this paper) and the

SEE electrons ejected by the opposite wall (denoted by the subscript ’b’ for beam), also

exist in the symmetric case, see reference [24] for details. However, the SEE asymmetry

creates two additional components: the beam electrons or bulk electrons reflected by

the stronger left sheath (denoted in the paper by the subscript ’rb’ and ’rce’). Thus the

incident electron flux to the right wall is the sum of 4 components:

ΓH
e,in = ΓH

b + ΓH
rb + ΓH

ce + ΓH
rce , (6)

ΓL
e,in = ΓL

b + ΓL
ce . (7)

In order to describe the complex process of penetration, trapping and reflection of

electrons between two walls, two additional penetration ratios are introduced, defined

as follows:
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αb =
ΓL
b

ΓH
e,out

, (8)

αce =
ΓL
ce

(ΓH
rce + ΓL

ce)
=

ΓL
ce

ΓH
ce

. (9)

Here, αb is the fraction of electrons emitted by the right wall that can reach the

left wall. αce is the ratio of collision-ejected fluxes incident on left and right walls.

αce < 1 because sheath potential drop is higher for the left wall. αce also measures the

reflection of collision-ejected electrons by the left sheath. The scattering of electrons in

the electron-neutral collision is random, thus the flux of electrons that initially move

towards the two walls must be equal. Therefore one obtains

αce =

(
1 +

ΓH
rce

ΓL
ce

)−1
. (10)

The description of αce and the collision ejected electron dynamics is further explained

in section 4.

Substituting equations (6)-(8) into equation (5) yield a relation between the

penetration ratios and the secondary emission coefficients:

(1− αce) +
γL

1− γL
= αb γH

1− γH
. (11)

The two penetration ratios, αce and αb, are both dependant on the potential

difference between two walls Φd = ΦL
w − ΦH

w , therefore equation (11) is equation for

the potential difference between two walls.

4. The analytical relation between the wall potentials and SEE yields

4.1. Bulk electrons

In the asymmetric case, the bulk electrons consist of 3 groups dependent on x-directional

kinetic energy, wx, and the potential at the location of the electron, Φ(x). Electrons
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with wx less than e|Φ(x) − ΦH
w | are trapped between two sheaths. Electrons with

wx > e|Φ(x) − ΦL
w| can penetrate both sheaths and escape to either wall. Therefore,

the electron fluxes hitting the two walls are the same for this group. Electrons with

e|Φ(x) − ΦH
w | < wx < e|Φ(x) − ΦL

w| can penetrate only the right sheath, and those

moving towards left are reflected by the left sheath, doubling the bulk electron influx

towards the right wall in this energy range.

The right sheath at the high-SEE wall controls the electron-ion flux equilibrium

on the whole systems, because the potential barrier at this wall for electrons to escape

is lowest. As discussed above, the emitted electrons in very weakly collisional system

transit between walls, therefore they do not contribute to total electron flux to two

walls. Therefore balance of electron and ion fluxes on two walls gives

ΓH
ce + ΓL

ce + ΓH
rce = 2ΓH

ce = 2Γi . (12)

As previously mentioned, the ion flux is not affected by the sheath, consequently,

the sum of bulk electron fluxes doesn’t change if one of SEE yields is changed according

to equation (12). Therefore, the smaller (right) sheath potential is not sensitive to

secondary emission, as shown in figure 3 and figure 5(a) [45].

It was proved in reference [24] that for the low-collisional plasma with highly

anisotropic temperature and depleted EVDF tail, the collision-ejected electrons flux is

reduced by a factor of order L/(2λ) compared with the value for the isotropic Maxwellian

EVDF:

Γce '
L

8λ
ne

√
8Tez
πme

e−
e(Φp−Φw)

Tez , (13)

where Tez is the electron temperature in the direction parallel to the walls. Figure 7

and figure 8 depict simulation results for the highly anisotropic EVDF and electron

temperature of case 3 (in both limiting cases: symmetric and asymmetric). In x-

direction, the electron temperature Tex ≈ 9.5eV is much lower compared with Tez ≈
32eV, and even in the asymmetric case the EVDF is depleted in both positive and

negative region where wx is larger than the right wall potential 18V. It proves our

assumption that part of collision-ejected electrons with wx > e|Φ(x) − ΦH
w | moving

leftward finally propagate through the right sheath after reflection from the left sheath.

The z-directional EVDF is close to the Maxwellian distribution with Tez ≈ 32eV in

either symmetric or asymmetric state as shown in figure 8.

Substituting equations (13) and (4) into equation (12) gives the relation for the

wall potential at the high-SEE side

Φp − ΦH
w =

Tez
e

ln

[
L

λ

√
Tez
Tex

√
mi

2πme

]
. (14)

The electron free path λ in equation (14) can be estimated from the electron-neutral

collision frequency νen and the average electron speed in the y-z plane
√

(πTez)/(2me).

Calculated values for the right wall potential given by equation (14) are summarized
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in table 3. Comparison with the values obtained in simulations 1-5 shows reasonable

agreement.

In the asymmetric case, the higher left wall potential reflects bulk and beam

electrons with e|Φ(x) − ΦH
w | < wx < e|Φ(x) − ΦL

w| towards the right wall. Consider

limiting asymmetric case with no emission from the left. Multiplying equation (11) by

Γi and taking γL = 0 and ΓH
e, out = Γi(γ

H/1− γH) gives

(1− αce)ΓH
ce = αbΓH

e, out . (15)

The right side of equation (15) is the net flux of beam electrons that transit from

the right wall to the left wall. The left side of the equation (15) is flux of collision-

ejected electrons that is reflected by the left sheath. The bulk electrons are driven by

potential asymmetry to move towards right, which partially compensates the electrons

carried away from the right wall by beam. The transit of bulk electrons is described

by the penetration ratio of bulk electrons αce that is defined by equation (9). In the

symmetric case αce = 1. If the SEE asymmetry develops, αce decreases because more

bulk electrons are transferred to the right wall.

Because the temperature and the mean free path of electrons in equation (13) are

not sensitive to SEE, the collision-ejected electron flux is proportional to a function of

the sheath potential drop and the temperature of z-direction:

Γce ∝ e−
e(Φp−Φw)

Tez . (16)

Hence the penetration ratio αce can be derived as:

αce =
ΓL
ce

ΓH
ce

=
e−

e(Φp−ΦL
w)

Tez

e−
e(Φp−ΦH

w )

Tez

= e−
eΦd
Tez . (17)

4.2. Beam electrons

A beam electron moving leftwards reaches the opposite wall if its initial energy wex

exceeds the potential difference between the two walls. Thus the penetration ratio αb

can be derived from the initial EVDF of the beam electrons:

ab(Φd) =

∫ ∞√
2eΦd
m

f b
v(vex)dvex∫ ∞

0
f b
v(vex)dvex

, (18)

where f b
v(vex) is the initial x-directional EVDF of beam electrons.

It is evident from equation (18), that αb decreases sharply if Φd exceeds typical

energy of emitted electrons. As described in section 2, beam electrons consist of

two groups: true secondary electrons and backscattered electrons. For backscattered

electrons, their energy (of order of incident energy) is much higher than the energy

of the true secondary electrons (few eV). Figure 9 illustrated the evolution of the

beam electron fluxes of backscattered (elastically and inelastically) and true secondary

electrons incident on the left wall for the case 3. The flux of true secondary electrons



15

 0

 1

 2

 3

 4

 20  25  30  35  40
 0

 5

 10

 15

 20

Γ
 /

 n
e

,a
v
g
 (

m
 /

 m
s
)

Φ
d
 (

V
)

t (µs)

 Flux (true secondary electron)

 Flux (elastically backscattered electron)

 Flux (inelastically backscattered electron)
 Φd (smoothed)

Figure 9. The flux of 3 beam electron components incident on the left wall obtained

in the simulation of case 3. The red, green and blue curve are respectively the flux

of true secondary, elastically backscattered and inelastically backscattered electrons,
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The magenta curve is smoothed simulation data of potential difference between two

walls.

greatly decreases immediately after Φd slightly rises above few volts, and diminishes to

almost 0 when Φd exceeds 10V. But the backscattered electron flux hardly changes when

Φd is less than 4V. And even though the backscattered electron flux decreases after Φd

surpasses 4V, it never vanishes. In fact, as we show below the backscattered electron flux

is responsible for high value of Φd.

Based on a specific initial EVDF of the beam, one can derive analytical relation

between αb and Φd. Figure 10 shows that the beam EVDF obtained in simulation 3

have two peaks at 1eV and 10eV, which correspond to the x-directional energy of true

secondaries and backscattered electrons, respectively. Neglecting small contribution

from inelastically scattered electrons, the beam EVDF can be approximated by a two

components model. The true secondaries EVDF, described in section 2 reads

f t
vx(vx) =

mvx
Tt

exp

(
−mv2x

2Tt

)
. (19)

The EVDF of backscattered electrons can also be approximated by equation (19),

but with a different temperature Tbs, and the total EVDF of the beam becomes

f b
vx(vx) = χt

mvx
Tt

exp

(
−mv2x

2Tt

)
+ χbs

mvx
Tbs

exp

(
−mv2x
2Tbs

)
, (20)

where Tt and Tbs are temperatures of the true secondary electrons and backscattered

electrons, and χt and χbs are the proportions of the true secondaries and backscattered

electrons in the total emission flux:

χt =
γHtrue
γH

,

χbs = 1− χt .

Tbs depends on the incident energy and is function of Tez, which is governed by the drift

speed Ez/Bx. Figure 10 shows that the beam EVDF obtained in the asymmetric state
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of case 3 doesn’t differ much from the symmetric state, indicating Tbs is not sensitive

to left SEE yield. Therefore, it is reasonable to use a constant value for Tbs in all cases

with Ez = 100V/cm and choose a smaller value for the case 5 with Ez = 50V/cm. Then

Tbs was obtained to be 10eV for case 1 and 3 to fit the simulation data of the beam

EVDF, and 6.2eV for case 5.

Incident electron creates one or more ”true” secondary electrons only if its energy

exceeds 13eV as shown in figure 2. χt is found to be around 0.5 in case 1, 3 and

5. In case 4 electron backscattering is shut down thus χt = 1. The inelastically

backscattered electrons are ignored because its partial emission yield is quite small. This

approximate model of beam EVDF is compared with the simulation data in figure 10.

From equations (18) and (20) one finally obtains the beam penetration ratio αb:

αb(Φd) = χt exp
(
−eΦd

Tt

)
+ χbs exp

(
−eΦd

Tbs

)
. (21)

4.3. Final equation of the wall potential

Substituting equations (17) and (21) into equation (11) gives the relation between SEE

yields and the potential difference between walls, Φd:

1

1− γL
=

γH

1− γH
[
χt exp

(
−eΦd

Tt

)
+ χbs exp

(
−eΦd

Tbs

)]
+exp

(
−eΦd

Tez

)
.(22)

When Φd = 0 equation (22) reduces to a simple equation γL = γH that reflects the

symmetry of SEE. Table 3 compares the solution for Φd given by equation (22) with the

simulation result of cases 1-5 and shows an good agreement.

Figure 11 plots the analytical (the green line) and simulation results (the red line)

of Φd in case 3. When solving equation (22) for case 3, the time-dependant evolution of
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Figure 11. The time-dependent evolution of Φd obtained by the simulation of case 3

and the analytical model of equation (22). The red curve is the simulation result. The

green curve is calculated by equation (22) using simulation data of SEE yields as input

parameters, with Tbs = 10eV, Tez = 32eV and χt = 0.53. The blue curve is calculated

by the similar approach of the green curve except that χt= 1. All the three curves

were smoothed by averaging 25 adjacent data points.

SEE coefficients obtained in the simulation were used as input parameters at each time

point. Equation (22) reveals that Φd increases with γH or with reducing γL, therefore

Φd increases quickly when the asymmetry of emission coefficients develops. The blue

line in figure 11 show analytical prediction for Φd when backscattering is not taken into

account. From figure 11 it is evident that backscattered electrons with much higher

energy significantly affect charging of the left wall. A comparison between the potential

profiles obtained in simulation case 3 and 4 also demonstrates this effect, as shown in

figure 12.

Examining the results for the case 3 and 5 in table 3 and in figure 13, it is evident

that the electric field Ez, or drift speed Ez/Bx, affects Φd by controlling the temperature

of bulk electrons Tez. When Ez reduces from 100V/cm to 50V/cm, Tez reduces from

32eV to 22eV. The change of Tez also leads to a decrease of backscattering electron

temperature Tbs. Thus the value of Φd is much smaller in case 5 compared with that of

the case 3 where the left SEE yield is negligibly small, as predicted by equation (22).

Even though discussion in sections 3 and 4 was limited to electron-induced

secondary electron emission, other effects such as ion-induced secondary emission or

formation of negative ions at the wall can be easily included in the model.

5. The unilateral inverse sheath

In this section we discuss limiting case of SEE asymmetry in which one of the two

emission coefficients surpasses 1. Figure 14 shows the potential profiles of case 6 (the

red line) where the right SEE yield was chosen to be 1.5 times that of BN and no

emission from the left wall. An inverse sheath [41] appears near the right wall with a

small potential increase of 1V. The left wall potential is still negative with a potential

drop of 45V that is much larger than the maximal value of case 3 with the same value

of electric field (see the blue line).

A wall potential is required to suppress some of the emission from the right wall,
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Figure 13. Potential profiles obtained in particle-in-cell simulations (case 3 and 5.)

because net emission from the incident electron flux exceeds unity without sheath

potential drop. Figure 15 shows how electrons and ions travel in the unilaterally positive

sheath state. Part of secondary electrons emitted by the right wall, named ’near-wall

reflected electrons’ (NWRE) in this paper, are immediately reflected by the sheath

back to the wall. The NWREs’ energy is small and their contribution to emission is

negligible. Thus the net SEE coefficient of the right wall can be maintained to unity.

The ions cannot reach the right wall, because their energy is less than wall potential.

Therefore, the charge balance on the right wall is only between incident and secondary
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electron fluxes.

In case 6, any bulk electron moving rightward is free to reach the wall and produces

secondary electrons. The initial bulk electrons quickly escape and all electrons are former

secondaries. Figure 16 presents the x-directional and z-directional EVDF in the middle

of the discharge of case 6. At the energy corresponding to the left wall potential, the

value of x-directional EVDF curve is less than 0.01. It proves only a tiny minority of

electrons can penetrate the left sheath.

In figure 16 we see that the EVDF of case 6 is close to an isotropic Maxwellian

distribution with Te = 8eV, except for the depletion of the high-energy region in the

positive x-direction. As electrons transit between two walls, the high-energy tail of their

x-directional EVDF is cut off due to the electron absorption by the left wall, but it is
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partially restored by backscattering near the right wall. For case 6 the two electron

temperatures in x and z direction Tez and Tex are almost the same, because electron

backscattering plays a dominant role in the secondary emission for electron with low

energy (see figure 2). In case 6, the partial SEE coefficient of backscattering γbs is

as high as 0.6. Tez can be much higher than Tex if γbs largely reduces in case of a

higher electric field and the incident electron energy. In case of Tex ≈ Tez, the potential

difference between the two walls can be calculated from the balance of ion and electron

fluxes and is similar to the potential drop in the collisionless sheath at a floating wall

in the semi-infinite Maxwellian plasma slab [52]:

ΦM
d =

Tez
e

ln

(
ξ

√
mi

2πme

)
. (23)

Here the factor ξ = 2 differs from ξ = 1 of the semi-infinite plasma, because the reflection

of ions from the right sheath doubles the ion flux at the left wall. Equation (23) gives

the upper limit of Φd caused by SEE asymmetry. Using parameters of case 6 one can

obtain ΦM
d = 47.7V by equation (23), which agrees well with the simulation result 45V.

6. Conclusion

In this paper we analyzed the electron kinetics in a weakly-collisional plasma slab

bounded by two floating walls that emit secondary electrons. It was shown analytically

and confirmed by particle-in-cell simulations that, the difference of SEE coefficients

between two walls leads to asymmetry of surface charging, sheath structure and wall

potential.

In case of two negative wall potentials relative to the plasma, the sheath potential

drop of the high-SEE side is not affected by low-SEE secondary emission. We generalized
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an analytical relation of the sheath potential for the symmetric SEE [24] to the

asymmetric case. The potential drop in the sheath of the low-SEE wall can greatly

exceeds the drop in the sheath of the high-SEE wall due to contribution of back scattered

electrons.

An unilateral positive wall potential appears when the emission coefficient of the

high-SEE wall approaches 1. In this case the electric potential monotonically increases

from the low-SEE wall to the high-SEE wall. For the high-SEE side, ions are reflected

from the high-SEE wall by the positive potential while all electrons are free to reach

that wall and all original bulk electrons escape and are converted to secondary electrons.

The low-SEE wall charges negatively to the potential given by formula similar to the

semi-infinite plasma

ΦM
d =

Tez
e

ln

(
ξ

√
mi

2πme

)
.

Here, the factor ξ = 2 differs from ξ = 1 of the semi-infinite plasma, because the

reflection of ions from the right sheath doubles the ion flux at the left wall. Our results

revealed the high-energy tail of EVDF is depleted at the low-SEE wall and then restored

by electron backscattering near the high-SEE wall.
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